If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2+70x-400=0
a = 4; b = 70; c = -400;
Δ = b2-4ac
Δ = 702-4·4·(-400)
Δ = 11300
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{11300}=\sqrt{100*113}=\sqrt{100}*\sqrt{113}=10\sqrt{113}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(70)-10\sqrt{113}}{2*4}=\frac{-70-10\sqrt{113}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(70)+10\sqrt{113}}{2*4}=\frac{-70+10\sqrt{113}}{8} $
| 7(10−x)=126 | | 4x2–5=0 | | 3x/5+2x/5=21/3 | | 2×(x+5)-3-(4+x)-4x=2x-23 | | -2x+17=-3+6 | | 11/4+2x=61/2 | | X=3+7y | | x^2+36x-205=0 | | X+(x+5)+3x=5x+5=20 | | 3x^2+x^2=150 | | 6(k−81)=60 | | 76=4(f+13) | | -3x-9=-1 | | C=0.001x3+2x+16 | | 40-(18+x)=7*15-70 | | 3z÷10+8=7 | | x=2(x-400000) | | 5x+4x=10x | | 8x-4=3-(2x+2) | | 2(3x+5)-1=5x+3 | | 8=-3/4(8/5x+12)-(-5/6x+3/2)-(1/30x)/3/2 | | 5x-25=18-3x+5-4x | | 4x+12=2x+12 | | 6(y-9)=-4(2+y) | | 7(x+1)(x-4)=0 | | z+25=74 | | 9t+80=14 | | 7.83/c=0.82 | | 2.5x-5=10 | | 0.5x^2+x-199.5=0 | | 5-1/5x=10 | | (19.9÷c)-8=1.95 |